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Abstract

This paper compares the exact small-sample achieved coverage and expected lengths of five methods for computing the confidence
interval of the difference of two independent binomial proportions. We strongly recommend that one of these be used in practice. The
first method we compare is an asymptotic method based on the score statistic (AS) as proposed by Miettinen and Nurminen [1985.
Comparative analysis of two rates. Statist. Med. 4, 213–226.]. Newcombe [1998. Interval estimation for the difference between
independent proportions: comparison of seven methods. Statist. Med. 17, 873–890.] has shown that under a certain asymptotic
set-up, confidence intervals formed from the score statistic perform better than those formed from the Wald statistic (see also
[Farrington, C.P., Manning, G., 1990. Test statistics and sample size formulae for comparative binomial trials with null hypothesis
of non-zero risk difference or non-unity relative risk. Statist. Med. 9, 1447–1454.]). The remaining four methods compared are the
exact methods of Agresti and Min (AM), Chan and Zhang (CZ), Coe and Tamhane (CT), and Santner and Yamagami (SY). We find
that the CT has the best small-sample performance, followed by AM and CZ. Although AS is claimed to perform reasonably well,
it performs the worst in this study; about 50% of the time it fails to achieve nominal coverage even with moderately large sample
sizes from each binomial treatment.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In biomedical research the difference of two independent binomial proportions is frequently of research interest.
Suppose that X1 ∼ B(n1, p1) is independent of X2 ∼ B(n2, p2). Numerous methods have been proposed for computing
a confidence interval for � ≡ p2 − p1. Katz et al. (1978) proposed inverting an unstandardized test statistic for the

∗ Corresponding author. Tel.: +1 614 292 3593; fax: +1 614 292 2096.
E-mail address: santner.1@osu.edu (T.J. Santner).

0167-9473/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2006.10.018



Author's personal copy

5792 T.J. Santner et al. / Computational Statistics & Data Analysis 51 (2007) 5791–5799

family of hypotheses

H0: � = �� versus HA: � �= ��,

where �� ∈ (−1, +1), to construct a � confidence interval. Agresti and Caffo (2000) and Brown et al. (2002) showed
that inverting the Wald test statistic, the most popular method to compute the confidence interval for �, has poor coverage
properties. Agresti and Caffo (2000) adjusted the Wald test statistic by adding two successes and two failures to both
samples and showed that the resulting “adjusted” Wald statistic � interval gives good 95% coverage. Newcombe (1998)
compared several asymptotic methods for computing � confidence intervals and concluded that the interval based on the
score statistic, as proposed by Wilson (1927) for a single binomial proportion, has superior performance characteristics
compared with the � interval based on theWald statistic. Nurminen (1986) and Miettinen and Nurminen (1985) proposed
a� interval, denoted byAS, based on a score statistic for testing H0 that is computed using restricted maximum likelihood
estimation. Farrington and Manning (1990) reviewed several asymptotic methods and recommended use of the AS �
confidence interval. The AS method is based on the asymptotic normality of the binomial sample proportions and thus
may not perform well for small size cases or extreme p1 and p2. Santner and Snell (1980) suggested an exact method
using an unstandardized test statistic for H0. Coe and Tamhane (1993) and Santner and Yamagami (1993) proposed
exact methods similar to the Blyth and Still (1983) method for single binomial proportion. Lee et al. (1997) introduced
a likelihood weighted method for constructing large- and moderate-sample � intervals and noted that in their operating
characteristic studies the Coe–Tamhane intervals have the best small-sample performance. Chan (1998), Chan and
Zhang (1999), and Agresti and Min (2001) proposed a common exact method, referred to as the “tail method” that
uses the standardized test statistic. More recently, Chen (2002) proposed a quasi-exact method. The AM, CZ, and AS
intervals are currently computed by StatXact.

This paper compares the small-sample performance of � confidence intervals. We consider four exact methods, the
methods by Agresti and Min (AM), Chan and Zhang (CZ), Coe and Tamhane (CT) and Santner and Yamagami (SY),
and their asymptotic counterpart AS. We compared the performance of these methods by finding the achieved coverage
and expected lengths for nominal 90% intervals.

2. Statistical methods

Below we describe the various confidence intervals compared in this paper. Each interval system is obtained by
inverting a family of tests

H0: � = �� versus H1: � �= �� (1)

corresponding to an arbitrary �� ∈ (−1, +1).

2.1. The AS method

The score statistic for testing (1) is

S(X) = p̂2 − p̂1 − ��√
p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

,

where X ≡ (X1, X2), p̂j ≡ Xj/nj for j = 1, 2, and p̃1 and p̃2 are the maximum likelihood estimates of p1 and p2,
respectively, under the restriction that p2 − p1 = ��. The test statistic must be defined separately if x1 = x2 = 0 and
�� = 0. Miettinen and Nurminen (1985) have shown that the restricted maximum likelihood estimates p̃1 and p̃2 can
be obtained by solving the cubic equation

3∑
k=0

Lkp
k
1 = 0 for p1 ∈ [max{0, −��}, min{1, 1 − ��}],

for p̃1 and setting p̃2 = p̃1 +�� where L3 =N , L2 = (n2 +2n1)�� −N −x1 −x2, L1 = (n1�� −N −2x1)�� +x1 +x2,
and L0 = x1��(1 − ��); here N = n1 + n2. Under H0 the test statistic S(X) has mean 0 and variance 1.
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The asymptotic 100(1 − �)% AS confidence interval (�AS, �
AS

) at x ≡ (x1, x2) is obtained by inverting one-sided
tests based on S(x); this leads to the interval endpoints defined by

1 − �

⎛
⎜⎝ p̂2 − p̂1 − �AS√

p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

⎞
⎟⎠ = �

2
= �

⎛
⎜⎝ p̂2 − p̂1 − �

AS√
p̃1(1 − p̃1)/n1 + p̃2(1 − p̃2)/n2

⎞
⎟⎠ .

2.2. The CZ method

Chan and Zhang’s method is based on using one-sided exact tests of (1) based on the score statistic S(x). Let
� = {x = (x1, x2) : 0�xj �nj , j = 1, 2} denote the set of all possible binomial outcomes. For the given �� let
p1 ∈ I (��) ≡ (max(0, −��), min(1, 1−��)). When X1 ∼ B(n1, p1) and X2 ∼ B(n2, p2 =p1 +��), the probability
of observing x is

f (x) = f (x|p1, �
�) =

2∏
j=1

(
nj

xj

)
p

xj

j (1 − pj )
nj −xj .

Let

Pp1,�� (S(x)) ≡
∑

y:S(y)�S(x)

f (y|p1, ��)

⎛
⎝Qp1,�� (S(x)) ≡

∑
y:S(y)�S(x)

f (y|p1, �
�)

⎞
⎠ (2)

denote the probability of obtaining a value of the score statistic that is less than or equal (greater than or equal) to S(x).
In Eq. (2), p1 is viewed as a nuisance parameter. The nuisance parameter is eliminated by considering the worst-case
p1 scenario of obtaining small (large) values of S(x):

P�� (S(x)) = sup{Pp1,�� (S(x)) : p1 ∈ I (��)} and Q�� (S(x)) = sup{Qp1,�� (S(x)) : p1 ∈ I (��)}.

The level 100(1 − �)% CZ confidence interval (�CZ, �
CZ

) at x is the solution of

P
�

CZ(S(x)) = �

2
= Q�CZ(S(x)).

2.3. The AM method

The AM method is similar in spirit to the CZ method, but is based on a two-sided test of (1). Set

Rp1,�(S(x)) =
∑

{y:|S(y)|� |S(x)|}
fp1,�� (y).

The p1 nuisance parameter is again eliminated by taking the supremum of Rp1,�� over all possible values of p1 in
I (��) and we set

R�� (S(x)) = sup{Rp1,�� (S(x)) : p1 ∈ I (��)}.

The level 100(1 − �)% AM confidence interval (�AM, �
AM

) at x is obtained as follows. Set �AM to be that �� value
obtained by starting at �� = −1 and increasing �� until

R�AM(S(x)) = �.

Similarly �
AM

is that value obtained by starting at �� = +1 and decreasing �� until

R
�

AM(S(x)) = �.
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2.4. The CT method

Both the Santner/Yamagami and Coe/Tamhane confidence intervals use greedy heuristics to construct acceptance
sets that contain as few x points as possible for testing (1). Both of their algorithms perform this computation for a
fine, but finite grid of �� ∈ (−1, +1). The acceptance sets are required to satisfy additional properties to insure that (1)
their inversion results in intervals, and (2) the resulting intervals have certain symmetry properties. For example, both
systems of intervals are invariant under relabeling of treatments and also under relabeling of the outcomes of “success”
and “failure.” The methods differ in their choice of greedy heuristic; there is no theory that guarantees either produces
an “optimal” set of acceptance sets but the small-sample coverage and length characteristics of these methods differ,
as will be seen below. The Santner/Yamagami intervals (�(x), �(x)) satisfy

P {�(X) < p2 − p1 < �(X)| (p1, p2)}�1 − � (3)

for all n1, n2 �1 and 0�p1, p2 �1 and the Coe/Tamhane intervals also satisfy (3) except for rare combinations of
(n1, n2, p1, p2, �) (see Section 3.3). This subsection summarizes the algorithm used to produce the CT intervals while
Section 2.5 summarizes the steps used by the SY intervals.

1. Partition the �-space, [−1, +1], by the equi-spaced grid −1��−M < �−M+1< · · · <0=�0 < �1< · · · <�M �+1,
where �−i = −�i , for 1� i�M , and the number of cut points, M , determines the desired decimal place accuracy
of the resulting interval. Set i = 1.

2. Partition the p1-space [�i , 1] by a grid 0�pi0 < pi1 < · · · < piNi
symmetrically about the midpoint (1 +�i )/2. As

usual, we regard (p1, p2) probabilities and their equivalent (p1, �) interchangeably.
3. For each j = 0, . . . , Ni , construct the (non-randomized) acceptance set Aij for testing H0: � = �i at level � to be

those outcomes x which are most probable when p1 = pij , i.e., Aij consists of x for which

f (x| p1, p2)�f (y| p1, p2) for all x ∈ Aij and y /∈ Aij ,

where p1 = pij , p2 = pij − �i , and∑
x∈Aij

f (x| p1, p2) = P {X ∈ Aij | p1 = pij , � = �i}�1 − �.

4. Construct the (combined) acceptance region Ai = ⋃Ni

j=0 Aij of H0: � = �i .
5. Add any x points to Ai that are required to eliminate “holes” in either the x1-direction or in the x2-direction.
6. Let �̂(x)=x1/n1 −x2/n2 for any outcome x. Eliminate any x∗ from Ai for which x∗ /∈ Ai−1 and �̂(x∗)�minx∈Ai−1

�̂(x).
7. For each 0� i�M , let

P {Ai |�i} ≡ inf
p1∈I (�i )

P {X ∈ Ai | p1, �i}.

then P {Ai |�i}�1 − � by construction. Also let

D = {x ∈ Ai |P {Ai − {x}| �i}�1 − �}.
(When n1 = n2 then D is modified to be the set of pairs of points

D = {{x, n − �x}|{x, n − �x} ∈ Ai and P {Ai − {x, �x}| �i}�1 − �}.)
Here �x = (x2, x1) is the permutation of x = (x1, x2). The separate definition for n1 = n2 insures that the final
intervals have certain invariance properties. The set D can be thought of as “candidate points” for elimination from
the acceptance set Ai . Eliminate the point x∗ ∈ D from Ai where P {Ai − {x∗}| �i )} = maxx∈D P {Ai − {x}| �i}
(x is the myopically optimal point to eliminate). (If n1 = n2, then pairs of points (x, n − �x) are eliminated from Ai

in a similar fashion.)
8. Construct acceptance sets A−i ≡ {n − x| x ∈ Ai} corresponding to H0: � = �−i for i = 1, . . . , M .
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9. Invert the acceptance sets {Ai} to form the confidence interval (�CT, �
CT

) at x as follows:

�CT ≡ min−M � i �M
{�i : x ∈ Ai} and �

CT ≡ max−M � i �M
{�i : x ∈ Ai}.

2.5. The SY method

The SY intervals (�SY, �
SY

) use a different myopic algorithm than do the CT intervals to construct a level
� acceptance set of the hypothesis H0: � = �i where −M � i�M and again −1��−M < �−M+1 < · · · < 0 =
�0 < �1 < · · · < �M � + 1 is a partition of [−1, +1] satisfying �−i = −�i . They invert the corresponding accep-
tance sets as do the CT intervals.

The key elements of the SY method are as follows. They let �̂(x) = x1/n1 − x2/n2, X denote the sample space of
(X1, X2), and −1 = d−K < · · · < d0 = 0 < d+K = +1 denote the distinct values of {�̂(x)| x ∈ X}. They partition X
into the disjoint subsets Xi = {x ∈ X| �̂(x) = di} for −K � i� + K . Every level � acceptance set Ai constructed by
their algorithm is of the form

Ai = Bi ∪ Xi+1 ∪ · · · ∪ Xt−1 ∪ Ct ,

where Bi ⊂ Xi satisfies Bi �= ∅ and Ct ⊂ Xt satisfies Xt − Ct �= ∅. Intuitively, the acceptance sets for larger �i

correspond to x associated with large �̂(x) point estimates of �. The steps of their algorithm are as follows:

1. Initialization: Construct the level � acceptance set A0 for testing H0: � = 0 which satisfies x ∈ A0 if and only if
n − x ∈ A0 and so that A0 has as few points as possible. Set i = 0.

2. Update: Construct Ai+1 from Ai by tentatively setting Ai+1 = Ai , removing one or more points x from Bi as long
as the remaining points continue to form a level � acceptance set for testing H0 : � = �i+1. If no points can be
removed and Ai+1 violates coverage requirement (3) for some (p1, p2) satisfying p2 − p1 = �i+1, then add one or
more points x from Xt − Ct to Ai+1.

3. Termination: For 1� i�M , set A−i to be the permutation Ai as in Step 8 of CT and invert the{Ai}Mi=−M as in
Step 9 of CT.
The CT and SY algorithms produce different systems of intervals with substantially different properties. The CT

intervals tend to be shorter for outcomes x that are in the “center” portion of the sample space X while SY intervals
tend to be shorter for x on the edge of the X sample space. Section 3 makes additional, detailed comparisons of the
two systems of intervals.

3. Empirical comparisons

3.1. Methods used to compare performance

We compared the performance of the five interval systems described in Section 2 for 90% nominal level intervals.
We take the nearness of the achieved coverage as the primary criterion and the expected length as the secondary
criterion. For each method and each (n1,n2) studied, the 90% confidence interval (�(x), �(x)) was computed for all
(n1 + 1)(n2 + 1) outcomes x. Then for each (p1, p2) used in the study, the exact achieved coverage was computed by

�(p1, p2) =
∑
x∈�

2∏
j=1

(
nj

xj

)
p

xj

j (1 − pj )
nj −xj ,

where � = �(p1, p2) = {x = (x1, x2) : �(x)�p2 − p1 ��(x)}, and the exact expected length was computed by

�(p1, p2) =
∑
x∈�

2∏
j=1

(
nj

xij

)
p

xj

j (1 − pj )
nj −xj (�(x) − �(x)).

The AS, CZ, AM intervals were computed using StatXact PROCs. The SY interval was computed using the
FORTRAN 77 code written by Yamagami (available from the authors). The SAS code implementing the CT method
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(available from the authors) is not always reliable (see Sun et al., 2002). We implemented the CT method in C + + for
this paper. After computing the 90% confidence intervals for each system, we determined the achieved coverage and
expected length for a 100 × 100 uniform grid of p = (p1, p2) values in [0, 1] × [0, 1] (1002 = 10, 000 points p). The
distribution of coverages and expected lengths of each system and each (n1, n2) are displayed below using BliP plots
(Lee and Tu, 1997). The vertical bars in each plotting symbol show the deciles of each achieved coverage or expected
length distribution.

3.2. Results

We studied seven n = (n1, n2) sample size cases; three of these cases were balanced (n ∈ {(5, 5),(15, 15), (30, 30)})
and four cases were unbalanced (n ∈ {(5, 15), (15, 25), (25, 35), (20, 50}). Each row of two panels in the figure below
corresponds to one of the seven n configurations. Within each row, the left and right panels display the distributions of
the achieved coverages and expected lengths for the five methods over the 10, 000 p cases, respectively. The vertical line
in each left panel is the 90% nominal coverage level. In each panel, the distributions are denoted AS for the asymptotic
score statistic method, CZ for the Chan and Zhang method, AM for the Agresti and Min method, CT for the Coe and
Tamhane method and SY for the Santner and Yamagami method (Fig. 1).

3.3. Discussion

The AM, CZ, SY intervals achieved at least the 90% nominal coverage for all choices of n and p while the CT
intervals have undercoverage for a few n and p cases. For example, when n1 = 15 = n2, CT intervals failed to achieve
the nominal 90% coverage in 36 of the 10, 000 p combinations computed and when n1 =30=n2, they failed to achieve
the nominal 90% coverage in 56 of the 10, 000 p combinations computed. This very occasional undercoverage occurs
because Step 6 can eliminate outcomes that cause non-monotonicity in the estimated � values for the acceptance sets
of two adjacent null hypothesis values, �i and �i+1. In contrast, the asymptotic AS method fell short nearly 50% of the
time. In particular, when n1 = 15 = n2, over 65% of the p cases fell below 90% and when n1 = 30 = n2, over 58% of
the p cases fell below the nominal level. In the unbalanced situations, the coverage of AS method also failed to achieve
nominal coverage in nearly 50% of p cases.

When the achieved expected lengths for each method by each n are examined (see the right panels, above), the
CT method consistently has the shortest achieved expected length of all methods followed by the AM and CZ
methods. The SY method is very conservative and most of the time it has the highest expected length of all five
methods.

4. Conclusion and recommendation

Based on the comparison of the distribution of achieved coverages and expected lengths for the five methods compared
in this paper, we recommend the CT method be used to compute confidence intervals for the difference of two binomial
proportions. If CT method is not available, we recommend that either the AM or CZ be used. We also recommend that
neither the AS nor the SY methods be used in practice. The asymptotic AS method is supposed to work well for the
large sample cases, however, even with the largest sample size case we studied, this was not true. The AS method failed
to achieve the nominal coverage roughly 50% of the time. While having good achieved coverage, the SY method has
inferior expected length compared to some of the other methods.

In some applications, confidence bounds for p1−p2 (one-sided confidence intervals) are of primary scientific interest.
For example, in a drug superiority trial, one can compare the lower bound for p1 −p2 with zero to make inference about
which group is better. In non-inferiority trials with a prespecific margin, one can compare the upper bound for p1 − p2
with the margin to evaluate whether the non-inferiority criterion is met. In such applications, one-sided hypothesis tests
are the relevant quantities whose acceptance regions are to be inverted. Of the two-sided tests considered in this paper,
the AS and CZ tests are devised from one-sided tests and hence of interest in such cases. However, we note that in cases
where the scientific application at hand does require a two-sided � confidence interval, intervals based on tests that
directly minimize the number of points in the acceptance set for testing (1) can be substantially superior to intervals
formed from tests obtained by intersecting two one-sided tests.
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Fig. 1. Distributions of expected lengths and coverages for SY, CT, AM, CZ, and AS over 10,000 equally-spaced (p1, p2) values in [0, 1] × [0, 1]
for seven (n1, n2) small- and medium-sized pairs.
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Fig. 1. Continued
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